,Fu , Su and Bai Damped Properties and Noether Symmetries of Damped Free Vibration, Pract. Periodical on Struct. Des. and Constr. 2010, 15(1): 50-53

  • Zhao Li, Fu Jing-Li and Chen Ben-Yong, Lie symmetries and conserved quantities for atwo-dimentional nonlinear diffusion equation of concentration, Chinese Physics B, 2010, 19(1):010301-010301-5

  • Fu Jing-Li,Chen Ben-Yong and Chen Li-Qun, Noether symmetries of discrete nonholono-mic dynamical systems, Physics Letters A, 2009.373:409-412

  • Fu Jing-Li and Chen Ben-Yong, Hojman conserved quantities and Lie symmetries of non-conservative systems, Modern Physics Letters B,2009,23(10):1315-1322

  • Fu Jing-Li,Nie Ning-Ming,Huang Jian-Fei,Jimé nez Salvador,Tang Yi-Fa,Vá zquez Luis and Zhao Wei-Jia, Noether conserved quantities and Lie point symmetries of difference Lagrange–Maxwell equations and lattices, Chinese Physics B, 2009 18(7):2634-2641

  • Li Ziyan and Fu Jingli(通讯作者), Euler–Lagrange equation from nonlocal-in-time kinetic energyof nonconservative system, Physics Letters A, 2009,374:106-109

  • Fu Jing-Li, Salnalor Jiménez and Tang Yi-Fa and Luis Vázquez, Construction of exact invariants of time-dependent linear nonholonomic dynamical systems, Physics Letters A, 2008,372: 1555-1561

  • Wang Xian-Jun and Fu Jing-Li(通讯作者), Energy-work connection integration scheme for nonholonomic Hamiltonian systems, Communication in Theoretical Physics, 2008,50(5): 1041-1046

  • Fu Jing-Li, Chen Ben-Yong and Xie Feng-Ping, Noether symmetries of discrete mechanico-electrical systems, Chinese Physics B, 2008,17(12): 4354-4360

  • Fu Jing-Li, Xu Shu-Shan and Weng Yu-Quan, A field method for integrating the equations of motion of mechanico-electrical coupling dynamical systems, Chinese Physics B, 2008, 17(6):1939-1945

  • Fu Jing-Li, Zhao Wei-Jia and Weng Yu-Quan, Structure properties and Noether symmetries for super-long elastic slender rod, Chinese Physics B, 2008,17(7):2361-2365

  • Fu Jing-Li, Dai Gui-Dong, Salvador Jimsenez and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange–Maxwell mechanico-electrical systems, Chinese Physics, 2007,16: 570-577

  • Zhao Wei-Jia, Weng Yu-Quan and Fu Jing-Li(通讯作者),Lie symmetries and the conserved quantities for super-long elastic slender rod, Chinese Physics Letters, 2007,24 (10): 2773-2776

  • Fu Jing-Li, Chen Li-Qun, Chen Xiang-Wei, Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems Chinese Physics, 2006, 15(1): 8-12

  • Fu Jing-Li, Chen Li-Qun, Salnalor Jiménez and Tang Yi-Fa, Non-Noether symmetries and Lutzky conserved quantities for mechanico-electrical systems, Physics Letters A 2006, 358(1) : 5-10

  • Liu Cui-Mei, Wu Run-Heng and Fu Jing-Li(通讯作者), Lie symmetries algebra of one-dimensional nonconservative dynamical systems, Chinese Physics, 2007,16(9):2665-2670

  • Zheng Shi-Wang, Tang Yi-Fa and Fu Jing-Li(通讯作者), Non-Noether symmetries and Lutzky conserved quantities for nonholonimic neoconservative dynamical systems, Chinese Physics,2006, 15(2),243-248

  • Liu Hong-Ji, Fu Jing-Li(通讯作者) and Tang Yi-Fa, Algebraic structure and Poisson’s theory of mechanico-electrical systems, Chinese Physics, 2006, 15(8),1653-1661

  • Fu Jing-Li, Chen Li-Qun and Bai Jing-Hua, Localized Lie symmetries and conserved quantities for the finite-degree-of-freedom systems, Chinese Physics, 2005, 14, 6-11

  • Fu Jing-Li, Li-Qun Chen, Non-Noether symmetries and conserved quantities ofnonconser-vative dynamical shstems, Physics Letter A, 2003, 317 (3-4), 255-259

  • Fu Jing-Li, Li-Qun Chen, Form invariance, Noether symmetry and Lie symmetry of

  • Hamilton systems, Mechanics Research Communication 2004 31(1) 9-19

  • Fu Jing-Li, Li-Qun Chen, Perturbation of Symmetries of Rotational Relativistic Birkhoffian Systems and Its Inverse Problems, Physics Letters A 2004,324 (2/3)95-103

  • Fu Jing-Li,Chen Li-Qun,On Noether symmetries and form invariance of mechanico-electrical systems Physics Letters A 2004,331,138-152

  • Fu Jing-Li, Li-Qun Chen. Lie symmetries and non-Noether symmetries of Hamilton canonical systems, Phys.2004,13,1611-1614

  • Fu Jing-Li, Li-Qun Chen. Non Noether symmetries and conserved quantities of Lagrange mechanico-electrical systems, Phys. 2004, 13, 1784-1789

  • Fu Jing-Li, Chen Li-Qun, Luo-Yi, Luo Shao-Kai, Stabikity of the equilibrium manifold of the relativistic Birkhoffian systems, Chinese Physics, 2003,12 (4),351-356

  • Fu Jing-Li, Chen Li-Qun, Bai Jing-Hua, Yang Xiao-Dong, Lie symmetries and conserved quantities of the controllable non-holonomic systems, Chinese physics, 2003,12 (7), 695-699

  • Fu Jing-Li, Li-Qun Chen,Velocity-dependent symmetries and conserved quantities of nonholonomic dynamical systems, Chinese Physics 2004, 13 (3) 287-291

  • Jing-Li Fu, Li-Qun Chen,Feng-Ping Xie, Form invariance, Noether symmetries and Lie symmetries of nonconservative dynamical systems, Journal of Shanghai university, 2004,6(3),252-257(EI04488688944)

  • Fu Jing-Li, Li-Qun Chen and Xiang-Wei Chen, Momentum-dependent symmetries and non-Noether conserved quantities for nonconservative Hamilton systems, Multidiscipline Modeling in Mat and Str, 2006,2(2),213-220

  • Ke Xian-Xin, Gong Zhen-Bang and Fu Jing-Li, Lie symmetries and conserved quantities of a biped robot, Acta Mechanica Sinica Solida, 2004,17(2),183-188

  • Fu Jing-Li, Dai Gui-Dong, Salvaolor Jimenes and Tang Yi-Fa, Discrete variational principle and first integrals for Lagrange–Maxwell mechanico-electrical systems, Chinese Physics,2007,16(3),570-577

  • Liu Hong-Ji, Fu Jing-Li(通讯作者) and Tang Yi-Fa, A series of non-Noether conservative quantities and Mei symmetries of nonconservative systems,Chinese Physics,2007,16(3):599-604

  • Zheng Shi-Wang Fu Jing-Li(通讯作者), Shi Shen-Yang, Chen Li-Qun  Chen Xiang-Wei Generalized geometry theory on constrained rotating relativistic Birkhoffian systems,Journal of Shanghai University, 2007,11(2): 115-120

  • , , , and . Damped properties and Noether symmetries of damped free vibration, Pract. Periodical on Struct. Des. and Constr. 2010, 15, (1):. 50-53

  • Jing-Li Fu, Hao Fu, Rong-Wan Liu, Hojman conserved quantities of discrete mechanico– electrical systems constructed by continuous symmetries. Physics Letters A 2010, 374 (2010) 1812–1818(SCI 583SS)

  • Zhao Li, Fu Jing-Li, and Chen Ben-Yong, Lie symmetries and conserved quantities for atwo-dimentional nonlinear diffusion equation of concentration, Chin. Phys. B 2010 , 19 (1) : 010301- 010301-5

  • He Yu-Fang, Fu Jing-Li and Li Xiao-Wei. The symmetries of wave equations on new lattices, Chin. Phys. B 2010 , 19 (6):080301-6 EI: 20102513017629

  • Fu JingLi, Li XiaoWei, Li ChaoRong, Zhao WeiJia& Chen BenYong, Symmetries and exact solutions of discrete nonconservative systems, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1699–1706

  • Fu Jing-Li, Chen, Li-Qun ,Chen Ben-Yong. Noether-type theory for discrete mechanico-electrical dynamical systems with nonregular lattices, SCIENCE CHINA Physics, Mechanics & Astronomy 2010 Vol.53 No.9: 1687–1698

  • Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and conserved quantities of Appellsystems under second-class Mei symmetry, Chin. Phys. B, 2010,19(9): 090304- 090304-6

  • Luo Yi-Ping, and Fu Jing-Li, Conformal invariance and Hojman conserved quantities for holonomic systems with quasi-coordinates, Chin. Phys. B, 2010,19(9): 090303-090303-6

  • zhou Sha,Fu Jing-Li and Liu Yong-Song, Lagrange equations of nonholonomic systems with feactional derivatives, Chin. Phys. B, 2010.19(12):120301-5

  • He Yu-Fang, Liu Yong-Song and Fu Jing-Li, Reductions and conserved quantities for discrete compound KdV-Burgers equations, Chin. Phys. B, 2011.20(1):010202-7

  • Shi Shen-Yang and Fu Jing-Li, Lie symmetry and Mei conservation law of continuum system, Chin. Phys. B, 2011.20(1):021101-5

  • Luo Yi-Ping and Fu Jing-Li, Conformal invariance and conserved quantities of Birkhoff systems under second-class Mei symmetry, Chin. Phys. B, 2011.20(1):021102-5

  • Li C.R., Lu N.P, Xua Q., Mei J, Dong W J, Fu J.L., Cao Z.X., Decahedral and icosahedral twin crystals of silver: Formation and morphology evolution, Journal of Crystal Growth, 2011, 319: 88–95

  • Zhao Li, Fu Jing-Li and Chen Ben-Yong, A new type of conserved quantity of Mei symmetry for the motion of mechanico-electrical coupling dynamical systems, Chinese Physics B, 2011, 20(4): 040201-1-040201-4

  • Xing-Zhong Wang, Jingli Fu and Chaorong Li,Noether symmetry and first integral of discrete nonconservative and nonholonimic Hamiltoinian system,Applied Mechanics and Materials,2012,117-119:167-173

  • Zhang Shi-Hua, Chen Ben-Yong and Fu Jing-Li, Hamilton formalism and Noether symmetry for mechanico-electrical systems with fractional derivatives, Chinese Physics B,2013,21(10):100202-1-100202-8

  • Wang Xing-Zhong, Fu Hao, Fu Jing-Li, Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems, Chinese Physics B, 2012,21(4):040201-6

  • Zhao Gang-Ling,ChenLi-Qun,FuJing-Li,Mei symmetries and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices, Chinese Physics B, 2013,22(3): 030201-1030201-7

  • Cai Ping-Ping,FuJing-Li,GuoYong-Xin,Noether symmetries of the nonconservative and nonholonomic systems on time scales,Science China: Physics, Mechanics & Astronomy, 2013, 56(5): 1017-1028

  • Fang-Yu Hong,Huiqin Qian, Jing-Li Fu, Zhi-Yan Zhu, and Li-zhen Jiang. Strong coupling between a topological qubit and a nanomechanical resonator, Physics Review A, 2013,87: 032339-1—032339-5

  • Hong Fang-YuXiongShi-Jie,Jing-LiZhu Zhi-Yan. Efficient excitation of a symmetric collective atomic state with a single-photon through dipole blockade. Commun. Theor.Phys., 2013,59:365-369

  • Fu Jing-Li, Song Duan, Fu Hao, He Yu-Fang, Hong Fang-Yu, Symmetries and conserved quantities of discrete wave equation associated with the Ablowitz-Ladik-Lattice-system, Chinese Physics B, 2013,22(9):090201-1-090201-9

  • Xia Li-Li, Chen Li-Qun, Fu Jing-Li, Wu Jing-He,Symmetries and variational calculation of disc discrete Hamiltonian systems, Chinese Physics B, 2013,23(7): 070201-7

  • 施沈阳, 傅景礼,陈立群, 离散Ladrange系统的Lie对称性,物理学报,2007,56(6)3060-3063(SCI)

  • 郑世望,傅景礼(通讯作者),李显辉,机电系统的动量依赖对称性和非Noether守恒量,物理学报,2005,54(12)5511-5516

  • 傅景礼, 王新民,相对论Birkhoff系统的Lie对称性和守恒量,物理学报,2000, (6),1023-1028

  • 傅景礼, 陈立群,罗绍凯,陈向炜,相对论Birkhoff系统动力学研究,物理学报,2001, (12) ,2289-2295

  • 傅景礼, 陈立群,薛纭,罗绍凯,相对论Birkhoff系统的平衡稳定性,物理学报,2002,51(12) , 2683-2689

  • 傅景礼,陈立群,薛纭,转动相对论Birkhoff系统的平衡稳定性,物理学报 2003, 52(2), 256-260

  • 傅景礼,陈立群,约束Birkhoff系统的几何理论,力学学报,2002,(11)(ZK)

  • 傅景礼,陈立群,谢凤萍,相对论Birkhoff系统的对称性摄动和绝热不变量。物理学报, 2003,52(11)2664-2670


  • 联系方式

    通讯地址:浙江省杭州下沙高教园区,浙江理工大学理学院物理系

    邮 编:310018

    电 话:0571-86843242, 13606545612

    电子邮箱: sqfujingli@163.com